

Structural and optical studies of GaBiAs layers grown by molecular beam epitaxy on (311)B and (001) GaAs substrates

M. Shafi^a, <u>M. Henini^a</u>, R. Kudrawiec^b, J. Ibáñez^c, M. Schmidbauer^d, S.V. Novikov^a, L. Turyanska^a, J. Misiewicz^b, S.I. Molina^e, D.L. Sales^e, R.H. Mari^a, M.F. Chisholm^f

^aSchool of Physics and Astronomy, University of Nottingham, NG7 2RD Nottingham, UK ^bInstitute of Physics, Wrocław University of Technology, 50-370 Wrocław, Poland ^cInstitut Jaume Almera, Consell Superior d'Investigations Científiques , 08028 Barcelona, Catalonia, Spain ^dInstitute for Crystal Growth, D-12489 Berlin, Germany ^eFacultad de Ciencias, Departamento de Ciencia de los Materiales e IM y QI, Universidad de Cadiz, 11510 Puerto Real, Cadiz, Spain ^fMaterial Science and Technology Division, Oak Ride National Laboratory, Oak Ridge, Tennessee 37831, USA

Outline

1. Introduction

- Motivation
- Growth on non-conventional GaAs substrates [non-(100)]
- Description of samples used in this study

2. Results and Discussion

- Enhanced Bi incorporation in GaAs using (311)B GaAs substrate
- Structural characterisation of (100) and (311)B GaAsBi epilayers
- Optical transmission spectroscopy of (100) and (311)B GaAsBi epilayers

3. Conclusion

Motivation

 $GaAs_{1-x}Bi_x$ and $GaN_yAs_{1-x-y}Bi_x$ alloys are attracting a considerable deal of attention due to their remarkable properties and potential applications.

Properties

- Large bandgap reduction (~100 meV per % of N; ~90 meV per % of Bi)
- Strong enhancement of the spin-orbit splitting energy

Applications

- Solar cells
- Infra-red lasers
- Terahertz emitters and detectors
- Spintonics
- Heterojunction bipolar transistors
- Temperature-insensitive semiconductor band gap

Growth on non-conventional GaAs substrates

An important degree of freedom in the epitaxy of III-V semiconductors is the growth of layers on high Miller index surfaces, *i.e.* **surfaces oriented differently from the usual (100) orientation.**

The use of non-(001) substrates has allowed:

- Fabrication of ultrahigh mobility two-dimensional hole gases in GaAs/AlGaAs heterostructures
- High-performance InAs/GaAs quantum dot QD lasers
- InGaAs/GaAs QDs with enhanced piezoelectric effects
- GaMnAs epilayers with modified Mn incorporation and magnetic anisotropies

Samples Details

		Ms-819	Ms-821	Ms-820		Ms-822
~1µm thick GaBiAs layer		(100)	(100)	.(100)		(100)
	Growth T (°C)	~350	~350	~350		~350
	As (Torr)	~1.2 10 ⁻⁵	~ 1.0 10 ⁻⁵	~8.0 10 ⁻⁶		~ 6.0 10 ⁻⁶
	Bi (Torr)	~1.2 10-7	~1.2 10-7	~1.2 10-7		~1.2 10-7
				This is t near sto g	he region of ochiometric rowth	
		Ms-823	Ms-82	25	Ms-824	Ms-826
		Ms-823 (311)B	Ms-82 (311)	25 B	Ms-824 (311)B	Ms-826 (311)B
Semi-insulating	Growth T (°C)	Ms-823 (311)B ~350	Ms-82 (311) ~350	25 B)	Ms-824 (311)B ~350	Ms-826 (311)B ~350
Semi-insulating	Growth T (°C) As (Torr)	Ms-823 (311)B ~350 ~1.2 10 ⁻⁵	Ms-82 (311) ~35(~1.0 1	25 B) 0 ⁻⁵	Ms-824 (311)B ~350 ~8.0 10 ⁻⁶	Ms-826 (311)B ~350 ~6.0 10 ⁻⁶
Semi-insulating (100) or (311)B	Growth T (°C) As (Torr) Bi (Torr)	Ms-823 (311)B ~350 ~1.2 10 ⁻⁵ ~1.2 10 ⁻⁷	Ms-82 (311) ~35(~1.0 1 ~1.2 1	25 B 0 0-5 0-7	Ms-824 (311)B ~350 ~8.0 10 ⁻⁶ ~1.2 10 ⁻⁷	Ms-826 (311)B ~350 ~6.0 10 ⁻⁶ ~1.2 10 ⁻⁷

Growth Temperature = 350° C Growth rate of GaAs = 1 monolayer per second Bi flux constant = $1.2 \ 10^{-7}$ Torr As flux varied = $1.2 \times 10^{-5} - 6 \times 10^{-6}$ Torr

HRXRD Results

(001) and (311)B GaBiAs epilayers grown under near-stoichiometric conditions

- Reflections arising from the GaAs substrate
- Broad diffraction peak at lower diffraction angles. This peak is attributed to the GaBiAs alloy

Similar patterns were obtained for the other samples with different Bi content

Effect of the Arsenic Overpressure on the Bi incorporation in (001) and (311)B GaAs epilayers

• Bi content incorporated into all (311)*B* epilayers, (with the exception of the sample grown with the lowest As flux), is appreciably larger than that incorporated into the (001) samples.

Near stoichiometric growth conditions
Bi content in (311)B = 4%
Bi content in (001) = 3%

Cross sectional view of Bright Field TEM Images

- Presence of extended structural defects in both epilayers.
- For (001) GaBiAs film, such defects consist mainly of dislocations.
- For (311)*B*, crystalline quality of the GaBiAs epilayer is fairly good close to interface but it degrades closer to free surface.
- For both orientations the *Z*-contrast image close to the interface reveals that no extended Bi segregation exists in these epilayers.

Optical transmission spectroscopy results

Samples grown near stoichiometric growth conditions:

For (001): Eg= XXX eV For (311)B: Eg= XXX eV

For the same Bi flux the (311)B Eg is around 90 meV lower than for the corresponding (001) Eg

Effect of Annealing: (100) samples

annealed at 200 °C for 3hours

- PL peak position does not change after annealing: 1.17eV
- PL linwidth is slightly narrower (~70meV)
- Emission is enhanced

Effect of Annealing: (311)B samples

annealed at 200 °C for 3hours

- Emission is enhanced
- PL peak position does not change after annealing: 1.05eV
- PL linewidth is slightly narrower; PL band shape is changed

Conclusions

- Content of Bi in GaBiAs varies with As flux.
- Enhancement of Bi incorporation was obtained by using (311)B GaAs substrate

near stoichiometric growth conditions and constant Bi flux: x~ 4% for (311)B and x~3% for (001)

• Bi incorporation into GaAs leads to large energy band gap reduction.

Δ Eg ~ 90 meV per 1% of Bi.

• Enhancement of PL after annealing at 200 C for 3 hours.

Acknowledgements

M.Shafi, S.V. Novikov, L. Turyanska, R.H. Mari R. Kudrawiec, J. Misiewicz J. Ibáñez, S.I. Molina, D.L. Sales M. Schmidbauer M.F. Chisholm (UK) (Poland) (Spain) (Germany) (USA)

UK Funding Agency

THANK YOU VERY MUCH FOR YOUR ATTENTION